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ABSTRACT 

The averaged Navier-Stokes and the k-ε turbulence model equations are used to simulate turbulent flows 
in some internal flow cases. The discrete equations are solved by different variations of Multigrid methods. 
These include both steady state as well as time dependent solvers. Locally refined grids can be added 
dynamically in all cases. The Multigrid schemes result in fast convergence rates, whereas local grid 
refinements allow improved accuracy with rational increase in problem size. The applications of the solver 
to a 3-D (cold) furnace model and to the simulation of the flow in a wind tunnel past an object prove the 
efficiency of the Multigrid scheme with local grid refinement. 
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INTRODUCTION 
Accurate solutions to the Navier-Stokes equation require large scale computations. The number 
of node points depends on the desired resolution. If only global features of the flow field are of 
interest or/and one has to limit the calculations then some modelling equations have to be used 
to complement the basic (averaged) Navier-Stokes equations. Models often used for small scale 
variations (in space and time) are known as 'turbulence' models. Here, we use a more or less 
standard such model, namely the two equation k-ε equations. Even when turbulence models 
are used one has to resolve the geometrical and larger physical scales of the problem. The wide 
variation of scales is the primary reason for the difficulties in simulating accurately real flow 
fields. Beside resolution problems one is faced with non-linearity which in many cases causes 
difficulties because of singular or near singular Jacobians. Thus, to solve the Navier-Stokes 
equations one must use means to allow rational distribution of node points (to limit the number 
of the discrete equations) and also use methods that can handle efficiently the system of non-linear 
discrete equations. 

Multiplegrid (MG) methods have been applied in the past 15 years for non-linear problems 
in computational fluid dynamics1-7. The main emphasis in most MG publications is the efficiency 
of the method in question. The efficiency of the method is practically established for 
incompressible and compressible test cases. For problems of applied character this efficiency 
has been questioned in some cases. Here, we apply the MG method to more realistic cases and 
to where experimental data are also available. The implemented code uses either V- or W-cycles 
in the FAS (full approximation storage) mode. Steady flows can be solved by using the basic 
scheme directly, or by pseudo-time marching method. Genuinely time-dependent problems are 
integrated implicitly, by solving the implicit problem by a full Multigrid (FMG) cycle. The 
efficiency of the code is not as high as those in pure test cases, but it is still considerably higher 
than those achieved by other single grid methods. 
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Using local grid refinements turned out to be very effective as has been also reported 
previously8-11. Associated with local mesh refinement is the question of when and where to 
refine. These issues are not often addressed and therefore one cannot make a real assessment 
of the efficiency and accuracy of the grid refined results. These questions have been addressed 
to some extent for incompressible flows8 and for transonic flows10. Other issues of locally refined 
grids are local conservation properties and imposing global constraints. These issues can be 
handled naturally if the information exchange among the grids is done appropriately 
(conservatively). 

Here, we demonstrate that our implementation of local grid refinements really improves 
efficiency in the sense that without loss of accuracy one does not have to use a globally fine 
grid, but rather a mix of locally fine and globally coarse grids. 

MATHEMATICAL MODEL OF INCOMPRESSIBLE TURBULENT FLOWS 
Turbulent flows contain various scales of eddies. For instance, for the flow in furnaces, the ratio 
of largest eddy and smallest eddy can be of the order of at least several thousands. It means 
that, for three-dimensional problems, mesh points of order O(1012) have to be used in order 
to capture all scale of eddies. Currently it is impossible to handle such large scale problems even 
on modern supercomputers. On the other hand, this is not necessary either. For most engineering 
problems, only the averaged properties of the flow field are of interests, hence lower resolution 
may be used. 

An often used approximation for turbulence is the two-equation k-ε model. The model is 
based on Boussinesq assumption by introducing a turbulent eddy viscosity to approximate the 
turbulent Reynolds stresses introduced in the averaging process. The (Reynolds) averaged 
Navier-Stokes equations and k-ε equations are the system of governing partial differential 
equations that has to be solved. 

Governing equations 
For three-dimensional incompressible turbulent flows, the Reynolds averaged Navier-Stokes 

equations, in cartesian coordinates can be written in conservative form as follows: 

where u,v,w are the velocity components in x,y,z directions respectively and p is the pressure. 
The continuity equation is: 

For turbulence closure, the two-equation k-ε model is: 
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k is turbulent kinetic energy, ε is dissipation rate of turbulent kinetic energy. Гk, Гε are model 
constants, Sk, St are source terms, such that: 

Sk=vt G–ε (7) 

Sε = (8) 

G=2 (9) 

In the above formulations, veff is the so called 'effective viscosity coefficient', vt is turbulent eddy 
viscosity: 

veff=vL+< (10) 

vL is kinematic laminar viscosity and Cµ is a model constant. 

Boundary conditions 
For u,v,w at wall and inflow boundries, Dirichlet boundary conditions are used (u=v=w=0 

at wall, given at inflow). At outflow boundary the reduced N-S equations are used4. k, ε boundary 
conditions at inflow are given, at outflow boundary zero second derivatives of k, ε are assumed, 
at wall boundaries the wall function model12 is adopted. 

k: =0; 

ε: ε P =C µ
3 / 4 (ky p ) 

veff: veff= for y + > 11.63 (11) 

veff=vL for y+≤ 11.63 

y+,u*: y+ = u* = VPK/IN 

Subscript p denotes the first grid point near wall. Vp is the velocity component at point p parallel 
to wall, yp is distance between the first grid point and wall, n is the direction normal to wall. 
E and K are constants, u* is the wall shear velocity, y+ is the dimensionless distance from the 
solid wall. 

In the above formulations, model constants are determined from experiments. Here we use12: 
C1= 1.44, C2 = 1.92, Гk= 1.0, Гε=1.3, Cµ=0.09, E=9.0, K=0.435. 

SOLUTION PROCEDURE 
The numerical solution procedure includes three different Multigrid strategies for different flow 
situations. Each Multigrid strategy is related to its own discretization, which is performed on 
a grid system with local refinements. This section also includes the numerical treatment of 
boundary conditions. 
Grid systems 

In order to resolve the small length scales in some flow regions (e.g. boundary layer), or details 
of the geometry itself, one must use fine grid distribution, while in other region (e.g. mainflow) 
one may use less fine grids. In order to solve the problem satisfactorily, one may either use very 
fine grid distribution everywhere, which would be very costly both in terms of computer resources, 
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or use stretch grids which is non-optimal in reducing the number of unknowns. This method 
may also decrease the accuracy of the numerical discrete approximation, and often also reduces 
the convergence rate. Local grid refinements can treat this problem more adequately. For regions 
with small length scales, refined grids can be added, while in other regions the global coarse 
grid can be used. Such a grid system is shown in Figure 1. The local grid refinement may be 
isotropic (i.e. in all directions), or non-isotropic (i.e. in one or two directions only) as in case 
of boundary layers. 

Based on the discussion above, we use rectangular grid system in our code. The nodes in 
each direction are evenly spaced. Such a grid system only requires the storage of three integers 
(number of node points in three directions) and three real variables (mesh sizes in three directions). 
In regions with small length scale locally refined grids are added. To define this local grid one 
needs seven integers and three reals. There are no theoretical restrictions in repeatedly introducing 
further levels of locally refined grids. In our code we have used up to 6 levels of locally refined grids. 

Time dependent flows 
The time-space discretization of (l)-(6) can be performed by using various methods, which 

may be classified into three main types: implicit methods, explicit methods, and semi-implicit 
splitting methods, von Neumann analysis shows that explicit methods limit the time step to be 
proportional to the square of spatial mesh size (as long as viscous terms are of any importance). 
This is a very severe limitation, imposing very small time steps when the grid is refined. Implicit 
methods do not impose such time step limitation. However, in such situations one has to solve 
an implicit problem. In cases when for physical reasons one may use long time steps, a fully 
implicit method may be most appropriate. Time integration can be done by using a FMG (with 
a single MG cycle) step to solve the implicit problem. In cases when the time step is limited for 
physical reasons, the dimensionless time scale is often of the order of the dimensionless spatial 
scale. In such cases we prefer a splitting scheme: implicit for the diffusive terms and explicit for 
the convective terms. Take (1) as an example, at point (i,j,l) the discretized equation is: 

+∆ +
x (uu) n +∆ t

y ( v u ) n + ∆ z
+ (wu)n+ ∆xpn+1 

= ∆x(veff∆xu)n+1+∆y(veff∆yu )n+1+∆2(vef f∆2u)n+1 (12) 
where ∆x, ∆y,∆ z are central difference operators, ∆+

x, ∆+
y, ∆z

+ are upwind difference operators for 
the first spatial derivatives. At is the time step. Put nth level terms (mainly convective terms) 
into right hand side Fu, let superscript m denote the grid level, (12) can be represented by: 

Lm
u, um– ∆ x p m = F m

u (13) 
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where Lu is an elliptic difference operator. Similar formulae are used to discretize the other two 
momentum equations and k-ε equations. The continuity equation is discretized using implicit 
central difference. The effective viscosity veff is updated using (10) (at grid level m): 

Lm
v vm

 eff =vm
eff – v L = F m

v (14) 

At finest grid (denoted by superscript M), Fm
v =0. At grid level m, let 

U=(u v w p k ε veff )T
, F=(FuFvFwFmFkFtFv)T (15) 

the whole discretized system can be represented as: 
LmUm=Fm (16) 

The diagonal form of Lm that has been used in this study, has the form: 

L= 

At finest grid (m = M), FM is known from nth time level solution. The difference operator L is 
elliptic, hence can be solved by the FAS (full approximation storage scheme) very efficiently. 

The Multigrid method consists of a so-called 'smoother' and data transfer procedures among 
the different grid levels. The transfer of residuals from grid level m to level m— 1, and the transfer 
of the dependent variables from level in to level m—\ is done by volume averaging. The transfer 
of the corrections from level m to level m+1 is done by trilinear interpolation. For more details 
see References 4, 8 and 10. 

The relaxation method for system (16) at each grid level is known as the 'smoother'. In the 
present smoother the pressure field is coupled to velocity field in the following way: First, 
consider the correction problem of (16), at grid level m: 

L ∆U= R (17) 

where ∆U = Uq+1 — Uq is the correction of dependent variables between qth iteration and (q + l)th 
iteration. R = F—LUq is residual of equation at qth iteration. ∆U is split as: 

∆U= ∆U* (18) 

with ∆U* = (∆u * ∆ v* ∆ w* ∆k* ∆ε* ∆v*
eff)T. Then from (17) and (18) we have (assuming that 
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Lu,Lv,Lw are identical): 

∆U* = R (19) 

where Q = (∆XX+∆yy+∆zz)/p, ∆ x x ,∆ r y ,∆ z z are central difference operators for the second spatial 
derivatives. To summarize, the relaxation step at level m consists of two stages: from (19) to 
get ∆U*, from (18) to get ∆U. This procedure is continued until the errors are smoothed out. 

V- (or W-) cycles can be used in the MG process. A V-cycle is, from grid level M to M – 1 
to . . . to 2 to 1, then back to 2 to . . . to M — 1 to M. After several (usually one or two) cycles 
a converged solution at time step n +1 is obtained. 

Acceleration of convergence to steady state (time-space MG) 
Using the time marching method proposed above, steady state solution can be achieved for 

steady problems after marching enough time steps. In order to accelerate this process further, 
we have used another MG cycle. The procedure is, after several time steps, to compute the 
residuals of the steady state equations and put the residuals and dependent variables into a 
coarser grid level. From this coarse grid level several time steps being taken (applying the MG 
method (12)–(19) to the implicit part). During this time marching, the maximum time step can 
be doubled since the grid size itself has been doubled. This process is continued until the coarsest 
grid level is reached. Then the correction informations are transferred from coarse grid to finer 
grid until the finest grid is reached. This procedure is repeated until a steady state solution is found. 

Steady Multigrid method 
Consider (1) as an example. The discretized equation is: 

α + L * ( ∆ u ) = F = L * ( u ) ∆XP (20) 

where ∆u is the correction of u, α is a relaxation parameter. The 'time dependent' term acts only 
as an under relaxation factor. L* is the difference operator: 

L*(ø)=∆+
x(uø) + ∆ +

y (vø )+∆ Z
+ (wø )–∆ x (v e f f ∆ x ø )–∆ y (v e f f ∆ y ø )–∆ z (v e f f ∆ z ø ) 

similar treatment is applied to the k-ε equations. The discretized equations are coupled in a 
similar way as (17)–(19) and then solved by V- (or W-) cycle FAS Multigrid cycles. 

Symmetric successive point relaxation (SSPR) has been used for relaxation (e.g. in solving 
(19) for AU*) in the above-mentioned three procedures. The total work unit count may be larger 
than for methods like line relaxation or plane relaxations, but total CPU time has often been 
found shorter in most general cases. 

Treatment of boundary conditions 
The wall boundary conditions for k,ε (wall function), are implemented in a way different from 

that of single grid methods. Instead of adding wall function explicitly, which is used in most 
single grid codes, the method used here updates k,ε at wall point in the way such that k, ε satisfy 
wall function (11) at point next to the wall. This step is only performed on the finest grid level. 
k, ε at wall points on coarse grid levels are updated by the MG data transfer procedures. 
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The boundary conditions on the local grid are handled depending on the location of the local 
grid point. The variable values at 'boundary points' that do not belong to a physical boundary 
are assigned by interpolation from a coarser grid that contains the local grid. In order to get a 
converged local grid solution, it is mandatory to maintain the mass conservation on all grids. 
The interpolation order is supposed9 to be m+p, where m is the order of partial differential 
equation, p is the order of numerical approximation. In our study, the same trilinear interpolation 
scheme as the one used in the MG procedure turned out to be adequate also for local grid 
'boundary points' value updates. The physical boundary conditions are applied on the finest 
possible (local or global) available grid. 

NUMERICAL RESULTS 
In order to evaluate the efficiency of the present schemes, their convergence characteristics are 
compared. Consider the flow on a (cold) furnace model. A single inlet is placed at some distance 
from the floor and the outlet is placed in the ceiling. Figure 2 shows a typical velocity vector 
field of this case. Uniform rectangular grids are used. In order to examine the grid influence 
two grids are used, i.e. (1) 22 × 14 × 14, using 3 levels; (2) 42 × 26 × 26, with 4 levels. The Reynolds 
number based on inlet width is 7000. Results from various schemes are shown in Figures 3-6. 

Figure 3 shows the time dependent flow convergence behaviour based on grid 42 × 26 × 26. 
The results are calculated by using the time splitting scheme (12): the broken line depicts the 
convergence history using single grid relaxation to solve the implicit part, the solid line is for 
the time-dependent MG procedure of the previous section. The horizontal axis shows work 
units. One work unit is defined to be equal to the computational effort on the finest grid level. 
The vertical axis is the averaged corrections of the dependent variables on the finest grid. In 
Figure 3 the convergence criterion in each time step is that the averaged correction less than 
1.0-5. The Figure demonstrates clearly that the MG method is superior to the single grid method 
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(in each time step MG method has convergence rate about 0.2-0.3, while the single grid method 
about 0.997). After 280 work units, the single grid scheme completed one time step, while MG 
method marched 75 time steps. In actual calculations one would impose less severe stopping 
criterion on the MG solver, to a single FMG cycle (or at most 2 cycles). This implies that the 
MG method is at least 75 times faster than single grid method in this case. 

Figures 4-6 show the convergence histories of the present methods to steady state. The 
convergence criterion in each case is that the steady state residual norm is reduced by six orders 
of magnitude, i.e. 

¯ R final ≤ 10-6 ¯ R initial 

where ̄  R is defined as: 

¯ R = 

where Ru, Rv, Rw, Rm, Rk, Rε are the sums of residuals of the steady state part of x-momentum, 
y-momentum, z-momentum equations, continuity equation, and k-ε equations. NP is the total 
number of unknowns. 

Figure 4 shows the results based on a grid 22 × 14 × 14. The solid line is the result from 
time-dependent MG procedure described earlier. That is, the implicit part is solved by a MG 
acceleration. The dotted line is the single grid result, which uses the splitting scheme, but no 
MG cycles are used to solve the implicit part (solved by single grid iterations). The broken line 
corresponds to the time-space MG scheme of the previous section. Figure 5 shows the results 
based on the fine grid (42 × 26 × 26). The three lines mark similar cases as in Figure 4. 

These Figures indicate that the usage of MG procedure does improve the convergence to a 
steady state solution. The usage of MG procedure when solving the implicit part of (12) leads 
to the faster convergence rate than with single grid method, while the result of the time-space 
MG is the best among the above-mentioned three schemes. However, it is also noted that the 
convergence rate is dependent on the grid size (Figures 4 and 5). This is due to the time marching 
step limitation properties. The grid dependent convergence behaviour can be improved by using 
the steady Multigrid method as seen in Figure 6. The solid line corresponds to the coarser grid 
(22 × 14 × 14) and the broken line to the finer grid (42 × 26 × 26). As seen, the convergence rates 
of the two grids are nearly equal. The residuals are reduced by 6 orders of magnitudes within 
70 work units. Single grid results are also depicted in Figure 6 for comparison. The dotted line 
corresponds to coarser grid and the long broken line to the finer grid. 
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The above results show the improvement in convergence rate due to MG procedures. The 
efficiency can be further improved by using local grid refinements. Figure 7 shows a case of low 
speed wind tunnel flow with a triangular obstacle placed in the middle of the tunnel. The 
Reynolds number in this case is 0.12 × 106 based on the height of the tunnel. Three grids have 
been used: (1) a global coarse grid 62 × 14 × 14, 3 levels; (2) a global fine grid 122×26×26, 
4 levels and (3) a global coarse.grid 62 × 14 × 14, 3 levels with one level local grid refinement 
62 × 26 × 26. 

Figure 7 shows the velocity vector field in symmetry plane. Figure 8 shows the u-velocity 
component distribution in various sections along main flow direction. The solid lines in Figure 8 
are the results of the global fine grid, the broken lines corresponds to the global coarse grid 
with the local grid refinement, the dotted lines are the results of the global coarse grid. Figure 
8 shows that the result on the combined coarse grid and locally refined grid has the same 
accuracy as that on the global fine grid, both are better than result on the global coarse grid. 
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In the case with local grid refinement, the required computer memory and CPU times are halved 
compared to the case with the global fine grid. 

CONCLUSIONS 
It has been shown that considerable improvements in efficiency can be achieved for turbulent 
flow calculations in three space dimensions by employing the MG procedures and local grid 
refinements. From the results shown in this paper we may conclude that: 

(1) for time accurate flows, the splitting scheme is very efficient after implementing MG 
procedures. In each timestep, using a single grid method the convergence rate is about 
0.997, with MG acceleration it can be 0.2–0.3; 

(2) when steady state or time-periodic solutions are sought, the time accurate MG method 
can be accelerated by using the time–space MG procedure; 

(3) the steady MG procedure seems to be faster than the time marching methods when applied 
to steady state problems; 

(4) without loss of accuracy, further improvement in efficiency can be achieved by employing 
local grid refinements. 
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